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to determine the length: either reserved framing codes or an explicit length count. A length count is
chosen to keep the system simple. Framing codes would require that certain data values be off limits
to the contents of the message. The payload length is bounded at a convenient binary threshold: 255
bytes. For simple control and data-acquisition applications, this is probably more than enough.

Based on these basic requirements and a couple of quick decisions, a packet format quickly
emerges. A three-byte, fixed-length header shown in Table 5.4 is followed by a variable-length pay-
load. No trailer is necessary in this network.

TABLE 5.4 Hypothetical Packed Header Format

Field Name  Byte Bits Description
DA 0 [7:0]  Destination address (OxFF = multicast)
SA 1 [7:0] Source address
LEN 2 [7:0]  Payload length (0x0 = no payload present)

The eight-bit destination address field, DA, comes first to enable the receiving hardware to
quickly determine whether the packet should be accepted by the node or ignored. A packet will be
accepted if DA matches the receiver’s node address, or if DA equals OxFF, indicating a broadcast
packet. At the end of the header is an eight-bit length field that indicates how many payload bytes are
present after the fixed-length header. This limits the maximum packet size to 255 payload bytes plus
the 3-byte header. A value of zero means that there is no payload, only a header in the packet.

Error detection can be handled by even parity. Each byte of the header and payload is sent with an
accompanying parity bit. When an error is detected, the network’s behavior must be clearly defined
to prevent the system from either ceasing to function or acting on false data. Parity errors can mani-
fest themselves in a variety of tricky ways. For example, if the length field has a parity error, how
will the receiver know the true end of the frame? Without proper planning, a parity error on the
length field can permanently knock the receivers out of sync and make automatic recovery impossi-
ble. This extreme situation can occur when an invalid length causes the receiver to either skip over
the next frame header or prematurely interpret the end of the current frame as a new header. In both
cases, the receiver will falsely interpret a bogus length field, and the cycle of false header detection
can continue indefinitely.

If a parity error is detected on either the destination or source addresses, the receivers will not lose
synchronization, but the packet should be ignored, because it cannot be known who the true recipi-
ent or sender of the packet is.

Fault tolerance in the case of an invalid payload length can be handled in a relatively simple man-
ner. Requirements of no intrapacket gaps and a minimum interpacket gap assist in recovery from
length-field parity errors. The absence of intrapacket gaps means that, once a packet has begun trans-
mission, its bytes must be continuous without gaps. Related to this is the requirement of a minimum
interpacket gap which forces a minimum idle period between the last byte of one packet and the start
of the next packet. These requirements help each receiver determine when packets are starting and
ending. Even if a packet has been subjected to parity errors, the receiver can wait until the current
burst of traffic has ended, wait for the minimum interpacket gap, and then begin looking for the next
packet to begin.

The parity error detection and accompanying recovery scheme greatly increases the probability
that false data will not be acted upon as correct data and that the entire network will not stop func-
tioning when it encounters an arbitrary parity error. However, error detection is all about probability.
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A single parity bit cannot guarantee the detection of multiple errors in the same byte, because such
errors can mask themselves. For example, two bit errors can flip a data bit and the parity bit itself,
making it impossible for the receiver to detect the error. More complex error detection schemes are
available and are more difficult to fool. Although no error detection solution is perfect, some
schemes reduce the probability of undetected errors to nearly zero.

If a packet is received with an error, it cannot be acted upon normally, because its contents are
suspect. For the purposes of devising a useful error-handling scheme, packet errors can be divided
into two categories: those that corrupt the destination/source address information and those that do
not. Parity errors that corrupt the packet’s addresses must result in the packet being completely ig-
nored, because the receiving node is unable to generate a reply message to the originator indicating
that the packet was corrupted. If the source address is corrupted, the receiver does not know to whom
to reply. If the destination address is corrupted, the receiver does not know whether it is the indented
recipient.

In the case of an address error in which the received packet is ignored, the originator must imple-
ment some mechanism to recover from the packet loss rather than waiting indefinitely for a reply
that will never arrive. A reply timeout can be implemented by an originator each time a packet is sent
that requires a corresponding reply. A timeout is an arbitrary delay during which an originating node
waits before giving up on a response from a remote node. Timeouts are common in networks be-
cause, if a packet is lost due to an error, the originator should not wait indefinitely for a response that
will never come. Establishing a timeout value is a compromise between not giving up too quickly
and missing a slower-than-normal reply and waiting too long and introducing unacceptable delays in
system functionality when a packet is lost. Depending on the time it takes to send a packet on a net-
work and the nodes’ typical response time, timeouts can range from microseconds to minutes. Typi-
cal timeouts are often expressed in milliseconds.

When an originator times-out and concludes that its requested data somehow got lost, it can re-
send the request. If, for example, a security control node sends a request for a camera to pan across a
room, and that request is not acknowledged within half a second, the request can be retransmitted.

In the case of a non-address error, the receiving node has enough information to send a reply back
to the originator, informing it that the packet was not correctly received. Such behavior is desirable
to enable the originator to retransmit the packet rather than waiting for a timeout before resending
that data.

The preceding details of a hypothetical RS-485 network must be gathered into network driver
software to enable proper communication across the network. While hardware controls the detection
of parity errors and the flow of bits, it is usually software that generates reply messages and counts
down timeouts. Figure 5.17 distills this information into a single flowchart from which software rou-
tines could be written.

As seen from this flowchart, transmit and receive processes run concurrently and are related. The
transmit process does not complete until a positive acknowledgement is received from the destina-
tion node. This network control logic implemented in software is simple by mainstream networking
standards, yet it is adequate for networks of limited size and complexity. Issues such as access shar-
ing are handled inherently by the request/reply nature of this network, greatly simplifying the traffic
patterns that must be handled by the software driver.

5.11 INTERCHIP SERIAL COMMUNICATIONS

Serial data links are not always restricted to long-distance communications. Within a single com-
puter system, or even a single circuit board, serial links can provide attractive benefits as compared





